Login:   Password:
Not Register?    Sign Up NOW!
Date: 28 July 2014
Radiation Therapy for Cancer Patients Controlled & Could Speed Up by Machine Learning  


Topic Name: Radiation Therapy for Cancer Patients Controlled & Could Speed Up by Machine Learning
Category: Biomedical
    
Sponsored Link:
   

SocialTwist Tell-a-Friend

Research persons:
Richard J. Radke
Dept. of Electrical, Computer, and Systems Engineering
Rensselaer Polytechnic Institute
110 8th Street

Phone: (518) 276-6483
rjradke@ecse.rpi.edu

Location: Troy, NY 12180, United States

Details

 Radiation Therapy for Cancer Patients Controlled & Could Speed Up by Machine Learning

National Cancer Institute and the Center for Subsurface Sensing and Imaging Systems (CenSSIS) at Rensselaer, which is funded by the National Science Foundation has developed Machine Learning , A new computer-based technique could eliminate hours of manual adjustment associated with a popular cancer treatment. In a paper published in the Feb. 7 issue of Physics in Medicine and Biology, researchers from Rensselaer Polytechnic Institute describe an approach that has the potential to automatically determine acceptable radiation plans in a matter of minutes, without compromising the quality of treatment.
“Intensity Modulated Radiation Therapy (IMRT) has exploded in popularity, but the technique can require hours of manual tuning to determine an effective radiation treatment for a given patient,” said Richard Radke, assistant professor of electrical, computer, and systems engineering at Rensselaer. Radke is leading a team of engineers and medical physicists to develop a “machine learning” algorithm that could cut hours from the process.

A subfield of artificial intelligence, machine learning is based on the development of algorithms that allow computers to learn relationships in large datasets from examples. Radke and his coworkers have tested their algorithm on 10 prostate cancer patients. They found that for 70 percent of the cases, the algorithm automatically determined an appropriate radiation therapy plan in about 10 minutes“The main goal of radiation therapy is to irradiate a tumor with a very high dose, while avoiding all of the healthy organs,” Radke said. He described early versions of radiation therapy as a “fire hose” approach, applying a uniform stream of particles to overwhelm cancer cells with radiation.

IMRT adds nuance and flexibility to radiation therapy, increasing the likelihood of treating a tumor without endangering surrounding healthy tissue. Each IMRT beam is composed of thousands of tiny “beamlets” that can be individually modulated to deliver the right level of radiation precisely where it is needed.

But the semi-automatic process of developing a treatment plan can be extremely time-consuming — up to about four hours for prostate cancer and up to an entire day for more complicated cancers in the head and neck, according to Radke.

A radiation planner must perform a CT scan, analyze the image to determine the exact locations of the tumor and healthy tissues, and define the radiation levels that each area should receive. Then the planner must give weight to various constraints set by a doctor, such as allowing no more than a certain level of radiation to hit a nearby organ, while assuring that the tumor receives enough to kill the cancerous cells.

This is currently achieved by manually determining the settings of up to 20 different parameters, or “knobs,” deriving the corresponding radiation plan, and then repeating the process if the plan does not meet the clinical constraints. “Our goal is to automate this knob-turning process, saving the planner’s time by removing decisions that don’t require their expert intuition,” said Radke.

The researchers first performed a sensitivity analysis, which showed that many of the parameters could be eliminated completely because they had little effect on the outcome of the treatment. They then showed that an automatic search over the smaller set of sensitive parameters could theoretically lead to clinically acceptable plans.

The procedure was put to the test by developing radiation plans for 10 patients with prostate cancer. In all 10 cases the process took between five and 10 minutes, Radke said. Four cases would have been immediately acceptable in the clinic; three needed only minor “tweaking” by an expert to achieve an acceptable radiation plan; and three would have demanded more attention from a radiation planner.

Radke and his coworkers plan to develop a more robust prototype that can be installed on hospital computers and evaluated in a clinical setting. He hopes to see a clinical prototype in the next few years. The researchers also plan to test the approach on tumors that are more difficult to treat with radiation therapy, such as head and neck cancers.

In a related project, Radke is collaborating with colleagues at Boston’s Massachusetts General Hospital to create computer vision algorithms that offer accurate estimates of the locations of tumors. This automatic modeling and segmentation process could help radiation planning at an earlier stage by automatically outlining organs of interest in each image of a CT scan, which is another time-consuming manual step.

About Rensselaer
Rensselaer Polytechnic Institute, founded in 1824, is the nation’s oldest technological university. The university offers bachelor’s, master’s, and doctoral degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of fields, with particular emphasis in biotechnology, nanotechnology, information technology, and the media arts and technology. The Institute is well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.
Research related others data
Useful links:http://news.rpi.edu/update.do?artcenterkey=134
Others research of researcher:
Distributed Computer Vision in Camera NetworksChange Detection and Understanding3D Modeling and Tracking from Distributed, Mobile Sensors
Recent publications:
Y. Jeong and R.J. Radke, Reslicing Axially-Sampled 3D Shapes Using Elliptic Fourier Descriptors. Elsevier Medical Image Analysis, Accepted December 2006, to appear, 27 pages.R. Lu, R.J. Radke, L. Happersett, C.-S. Chui, J. Xiong, E. Yorke, and A. Jackson, Reduced-Order Optimization for Simplifying Prostate IMRT Planning, Physics in Medicine and Biology, Vol. 52, No. 3, pp. 849-870, February 7, 2007. Journal-formatted version at Institute of Physics (subscription required).Dhanya Devarajan and Richard J. Radke, Calibrating Distributed Camera Networks Using Belief Propagation. EURASIP Journal on Advances in Signal Processing: Special Issue on Visual Sensor Networks, Volume 2007, Article ID 60696, 10 pages. Journal-formatted version at Eurasip JASP (open access).

Zhaolin Cheng, Dhanya Devarajan, and Richard J. Radke, Determining Vision Graphs for Distributed Camera Networks Using Feature Digests. EURASIP Journal on Advances in Signal Processing: Special Issue on Visual Sensor Networks, Volume 2007, Article ID 57034, 11 pages. Journal-formatted version at Eurasip JASP (open access).

Others researcher involved in this research:
Anil Cheriyadat, Ph.D.-
Siqi Chen, Ph.D.-
Dhanya Devarajan, Ph.D.-
Renzhi Lu, Ph.D.-
Ted Yapo, Ph.D.
Media contact:
Contact: Jason Gorss,
Phone: (518) 276-6098,
E-mail: gorssj@rpi.edu.


Related research: Predict cells' response to drugs, 'Fuzzy logic' reveals cells' inner workings, 'Wireless' Activation Of Brain Circuits, ,mThe use of green tea polyphenols to the development of new anti-cancer agent expectations!, 21st-century pack mule: MIT's 'exoskeleton' lightens the load, 3D Ultrasound brain scanner : successfully image the brain, 450 new terms for describing gene products involved in microbe-host interactions., A discovery in C. elegans opens a new avenue for the treatment of obesity, A New era of Cancer, A new model of lie detector, A signaling pathway crucially involved in Crohn's disease and Ulcerative Colitis, A statistical study reveals a common origin for schizophrenia and bipolar disorder, Artificial cells, simple model for complex structure, Bath Pain Management Unit has developed an observational tool, Biomarker, or biological indicator, for early diagnosis of neurological disorders, Biomedical researchers create artificial human bone marrow in a test tube, Biomolecular World : connections among biology and physics, and molecules and computers, Detect cancer and neurological diseases by identifying certain molecules present in human blood or urine, Developed simple bladder cancer test, Different biomolecules (DNA, proteins, etc.) in a single sample, Discovery of a new protein involved in the occurrence of cardiovascular disease, Duke scientists map imprinted genes in human genome, say a modern-day Rosetta stone, Emotions play a part in moral judgments, Factors of Prostate Cancer Risk, FINDING SURVIVORS, PROTECTING DRIVERS

Add Research

Full Name *
Email address *
Location
Your Research *

 
Home | Members.Benefit | Privacy.Policy | Bookmark.This.Page | Contact.Us
Conveyor technology

© 2006 - 2014 Engineering Information. All Rights reserved.